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Single crystals of refractory materials are often dif-
ficult to obtain from the melt due to the high temper-
atures involved. Obtaining crystals at temperatures
below the melting point can be accomplished by methods
that involve growth from the gas phase (i.e., iodine
transport) or growth from solution such as the use of
molten salt fluxes and solvothermal methods. To
perform solvothermal crystal growth, a feedstock, sol-
vent, and a solubilizing agent known as a mineralizer
are heated in an autoclave that is subjected to a
temperature gradient. This method has been used to
grow crystals of a wide variety of materials in super-
critical H2O, including sulfides.1 Crystals of numerous
sulfur compounds (mostly polysulfides and sulfosalts),
selenides, and tellurides have been grown in ammonia
and ethylenediamine.2 Usually, polysulfides (Sn2-) and
salts of soft thioanions (AsS43-, Sn2S64-, etc.) are grown
at more modest temperatures than sulfides of hard
cations. Since alkaline earth sulfides hydrolyze to some
extent in water,3 nonaqueous solvents such as NH3 are
probably more suitable than H2O for growing crystals
of these materials. As part of a study of ternary sulfide
materials, the application of ammonothermal methods
of crystal growth to binary and ternary alkaline earth
sulfides was examined.
The source sulfide(s), an acidic mineralizer (usually

NH4I), and liquid ammonia were sealed in a thick-
walled tube which was then heated in an upright
position in a water-filled pressure vessel for 12-60 h
at the desired temperature.4 The top of the tubes was
significantly cooler than the bottom, but the precise
thermal gradient experienced by the tubes could not be
measured with my apparatus.5 Up to about 300 °C, the
experiments produced only highly solvated crystals that
rapidly decomposed when removed from the tube (in a
glovebag). Those crystals are believed to be hydrosul-
fide compounds based on a similar experiment with Y2S3

and NH4I at 300 °C in ethylenediamine (en) that
produced crystals of the hydrosulfide Y(en)4(SH)2.72I0.28.6
At temperatures above 300 °C, NH4I mineralizer

facilitated growth of CaS and SrS crystals in NH3.7
Large (several mm) crystals could be obtained at the
top of the quartz tubes, but the crystal sizes were not
very reproducible. With strontium sulfide, larger crys-
tals were produced more easily. Growth rates increased
substantially with higher reactant concentrations. Crys-
tal growth was also attempted with CaO at 450 °C to
determine if ammonothermal methods are generally
applicable to the chalcogenide group. The exclusive
formation of hexagonal plates of Ca(OH)2 at the top of
the tube can be explained by the high thermal stability
of the hydroxide (dec 580 °C).8
The effect of temperature on the growth of CaS

crystals was examined in some detail. The effect of
temperature on a system with a constant charge, fill
(constant within (5%), and run time is presented in
Figure 1. Deposition of CaS starts around 335 °C, and
the deposited mass generally increased with increasing
temperature. There is some scatter in the data indicat-
ing low reproducibility. One possible cause of irrepro-
ducibility is variation in the number of seeds present
at the top of the tube. In some runs, a solid polycrys-
talline mass formed at the top of the tube, in others
single crystals fell down from the top of the tube onto
the charge. The mechanical integrity of any deposited
polycrystalline mass of CaS appeared to increase with
increasing temperature. Infrared spectra of CaS crys-
tals showed the presence of ammonium ion/ammonia
with strong absorption bands at 3110, 2940, and 2805
cm-1 (NH stretch) and 1420 cm-1 (NH bend). Heating
the CaS crystals under vacuum to 500 °C evolved only
CO2 and organic compounds (which were probably
absorbed onto the surface), and did not change the IR
spectra. No ammonia was evolved from the crystals,
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which indicated that ammonia-filled inclusions were not
present in large enough amounts to break the heated
crystal. When the CaS crystals were grown with
smaller amounts of mineralizer,4b the absorption peaks
from ammonium ion were absent and the small IR
absorption peaks from ammonia-filled inclusions be-
came visible. Some SrS crystals grown with a high
mineralizer concentration4c had only weak peaks from
ammonium ion, but large numbers of inclusions were
visible under the microscope and an IR spectrum
showed NH3 to be present.
Attempts were also made to grow crystals of solid

solution and ternary sulfides. A mixture of CaS and
SrS in the starting charge resulted in the growth of a
mixture of solid solutions of CaS and SrS. Powder
patterns showed numerous peaks from solid solutions
of different composition, and even individual crystals
had broad streaks instead of well-defined spots on a
rotation photograph. Attempts to grow CaY2S49 am-
monothermally with acidic mineralizers using either a
CaY2S4 powder or a mixture of CaS and Y2S3 as source
material were not successful at temperatures up to 500
°C. Using a CaS-CdS solid solution (Ca0.75Cd0.25S)10
as source material at 370 °C resulted only in crystals
of CaS at the top, cooler portion of the tube and small
hexagonal plates of CdS at the bottom. Manganese-
doped CaS crystals (0.9 mol %) were produced at 400
°C by the addition of a small amount (1 mol % metals
basis) of MnI2 to the initial charge. In a similar manner,
brown copper-doped (0.2 mol %) CaS crystals were
produced at 365 °C by adding 1 mol % CuI.11 Black
square plates of NH4Cu4S3 (1) also formed near the
bottom of the tube in the latter case.12 Reactions with
higher concentrations (20-40%) of CuI were also run
at temperatures from 350 to 360 °C. In these reactions
larger quantities of 1 formed, which also formed near
the top of the tube. Yellow to orange (by transmitted
light) hexagonal plates of a previously unknown ternary
sulfide, CaCu2S2 (2), formed near the middle to the top

of the tube and were intermixed with crystals of 1, CaS,
and thin black wire-like crystals of the known am-
monium copper(I) sulfide, NH4Cu7S4 (3).13 An experi-
ment at 425 °C produced 3 and copper-containing CaS,
but not 1 or 2. With both 1 and 2, there was not
sufficient material for bulk elemental analysis, but a
qualitative energy-dispersive X-ray spectrum showed
the correct elements to be present in 1-3.
The structure of the mixed valence ammonium copper

sulfide 1 is isotypic with the other known compounds
in the MICu4S3 series (MI ) K, Rb, Cs, Tl).14 The only
real difference between these structures is the spacing
between the (Cu4S3)n layers resulting from the size of
the cation, which is reflected in the unit cell parameter
c (NH4

+, 9.48 Å; K+, 9.26 Å; Rb+, 9.41 Å; Cs+, 9.69 Å).
The synthesis of a selenium analogue (CsCu4Se3) by
hydrothermal methods has been reported.1c
The ternary sulfide 2 has a CaAl2Si2-type structure,15

which consists of a double layer of fused six-membered
nonplanar Cu-S rings (Cu2S22-) separated by the Ca2+

ions (Figure 2). The only other known alkaline earth-
copper sulfide of the MIICu2S2 stoichiometry is BaCu2S2,
which is found in both a tetragonal and an orthorhombic
structure.16 However, a barium-silver sulfide (BaAg2S2)
was recently found to have a CaAl2Si2-type structure.17
An infrared spectrum was obtained from a crystal of 2
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Figure 1. A plot of the mass of CaS deposited vs growth
temperature.

Figure 2. Structure fragment of CaCu2S2 (2). The thermal
ellipsoids are at the 50% level, and the Ca atoms at each vertex
of the unit cell are also shown. Atom coordinates: Ca1 [0, 1,
1], Cu1 [1/3, 2/3, 0.3765(2)], S1 [1/3, 2/3, 0.7463(2)].
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using an IR microscope and showed no absorptions from
4000 to 700 cm-1.
Ammonothermal synthesis using acidic mineralizers

has proven to be a very versatile technique for crystal
growth of both binary and ternary sulfide materials.
While this method clearly cannot afford crystals of every
possible material, crystal growth of many novel, inter-
esting, and potentially useful materials should be pos-
sible, and extensive study is warranted.
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